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Complex phase dynamics in coupled bursters
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The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically
arises when the systems individually display complex wave forms associated, for instance, with the presence of
subharmonic components. Alternatively, phase multistability can be caused by variations of the phase velocity
along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase
multistability, the paper examines a variety of phase-locked patterns in the bursting behavior of a model of
coupled pancreatic cells. In particular, we show how the number of spikes per train and the proximity of a
neighboring equilibrium point can influence the formation of coexisting regimes.
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[. INTRODUCTION distinguished in the power spectrum. Phase multistability
also takes place for weak chaos that demonstratééfzemd

Bursting is the primary mode of electrical activity for a structure.
variety of nerve and endocrine cells]. Braunet al.[2], for The hierarchy of multistability in identical interacting sys-
instance, have investigated bursting patterns in dischargingms with weak dissipative coupling was studied numerically
cold fibers of the cat, and Brawet al. [3] have studied the and experimentally by Astakhaat al.[9]. Vadivasovaet al.
effect of noise on signal transduction in shark sensory celld.10] showed that this type of multistability is structurally
Plant and Kim[4] have developed a mathematical model tostable with respect to a weak mismatch between the basic
account for experimentally observed burst patterns in pacerequencies. However, the bifurcation sequence changes
maker neurons, and Morris and Led&i have modeled the when the mismatch or the coupling strength is increased.
complex firing patterns in barnacle giant muscle fibers. Postnowet al.[11] described the nested structure of the phase

It is known that pancreati@ cells under normal circum- synchronized regions. Recently, considering a model of
stances display a bursting behavior with alternations betweecoupled units in the kidney, similar results were obtained for
an active(spiking state and a silent stafé]. It is also es- self-modulated oscillations with multicrest wave forfi].
tablished[7] that the secretion of insulin depends on theFor a system of two diffusively coupled oscillators operating
fraction of time that the cells spend in the active state, andh the 1n regime of self-modulationr( being an integer
that this fraction increases with the concentration of glucos@ne expects coexisting synchronous solutions that differ
in the extracellular environment. The bursting dynamics confrom one another by phase shifts. The corresponding syn-
trols the influx of C&" ions into the cell, and calcium is chronization region consists of a set @fArnol'd tongues
considered an essential trigger for the release of insulin. lkmbedded one into the other or shifted with respect to the
this way, the bursting dynamics serves to organize the remean synchronization frequency.
sponse of theB cells to varying glucose concentrations. At Diffusive coupling between two limit cycle oscillators
glucose concentrations below 5 mM, the cells remain silenttypically leads to in-phase synchronization being the only
For very high glucose concentrations>22 mM), on the stable state in the weak-coupling linfit3,14. It was re-
other hand, the cells spike continuously, and the secretion afently shown, however, that the same coupling for Morris-
insulin saturate$8]. To provide the total output of a pancre- Lecar neuron modelsl5] and modified Van der Pol oscilla-
atic islet, a large number g8 cells must cooperate. When tors[16] can give rise to antiphase synchronization when the
interaction between the individud cells is strong, sizable limit cycle is close to a homoclinic bifurcation. In this case,
clusters of cells operate as a single unit. With weaker interthe dephasing originates from a deformation of the phase
action, however, the mutual entrainment of the firing activi-flow, i.e., from a strong variation of the phase velocity along
ties of the coupled cells becomes less trivial. the limit cycle.

Many processes in nature may be characterized by a sig- To our knowledge, the multistability of bursting oscilla-
nificant number of coexisting regimes at a given set of pators has not yet been examined in detail. de Vaeal.[17]
rameters but with different initial conditions. A set of pos- found asymmetrically phase-locked solutions to be typical
sible operating regimes serves as an example ofor coupled heterogeneous beta cells while a set of coexisting
multistability. We focus on the phenomenon piiase multi-  out-of-phase regimes was observed for coupled Hindmarsh-
stability, i.e., the simultaneous existence of stagjmchro- Rose model$18,19. When changing the initial conditions
nousregimes withdifferent phaseelationships between the the latter system switched from one burst-locked mode to
oscillations. Originally, this type of multistability was ob- another with fixed parameters. In the present paper, instead
served for diffusively coupled functional units that individu- of delineating different regimes and following the evolution
ally follow the Feigenbaum period-doubling route to chaosof various coexisting solutions, we focus on differemcha-
[9-11]. The possible synchronous regimes increase in numraismsof phase complexity in coupled bursters described by
ber when more subharmonics of the basic frequency can e Sherman moddPR0]. These mechanisms are related to
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FIG. 1. Example of bursting oscillations in the single Sherman model with five spikes per(Bu&D. phase plot{b) temporal variation
for the membrane potentiaVg= —39.0 mV, kg=0.000 57).

the complex wave forms of the oscillations as well as to a—75 mV the respective Nernébr reversal potentials.r/ g
variant of the above mentioned dephasing effect. As a quardefines the ratio of the fas¥/(andn) and the slow(S) time
titative measure of phase dynamics we use the method @fcales. The time constant for the membrane potential is de-
effective coupling[21] that provides information on the termined by the capacitance and the typical total conduc-
phase properties of the interacting solutions and on the numance of the cell membrane. With=0.02 s andrs=35 s,

ber of synchronous regimes. the ratioks= 7/ 75 is quite small, and the cell model is nu-
merically stiff.
Il. MODEL The calcium current o, is assumed to adjust instanta-

. . . __...._neously to variations iVv. For fixed values of the membrane
As a basis for the_present analysis we use the Slmpllfle%otential, the gating variables and S relax exponentially
”;g‘?e' of a pancreatigs cell suggested by Shermagt al. towards their voltage dependent steady state valygy)
[22]: ands, (V). Together with the ratits of the fast to the slow
dv time constantVg will be used as the main bifurcation pa-
T——=—lcdV)—1«(V,n)—14V,S), (1)  rameter. This parameter determines the membrane potential
dt at which the steady state value for the gating varisgbhb-
tains half its maximum value. The other parametersgye
r@=)\[nm(V)—n], =4.0, Vp,=—20mV, V,=-16 mV, 6,=12mV, 6,
dt =5.6 mV, 6s=10 mV, ando=0.85. These values are all
adjusted so that the model can reproduce experimentally ob-
served time series. In accordance with the formulation used
by Shermanet al. [22], all the conductances have been
scaled relative to some typical conductance. Hence, we may
where also consider Eq9.1) as the model of a cluster of closely
coupledp cells that share the capacity and conductance of
lcd V) =0gcan(V)(V—=Vca), the total membrane area.
Figure 1 provides an example of the variations\gh,
Ik(V)=gxn(V—Vy), andSas obtained by simulating the cell model under condi-
tions where it exhibits bursting behavior. A bifurcation analy-
Is(V)=0sS(V—Vy), sis of the single Sherman model shows a variety of different
spiking regimeq23]. An example of a two-dimensional bi-
1 with @=mn. and S furcation diagram is presented in Fig. 2. Near the bottom of
1+exd(V,—V)/0,] T ' this figure we observe a Hopf bifurcation curve. Below this
curve, the model has one or more stable equilibrium points.
Here, V represents the membrane potential wiilenay  Above the curve we find a region of complex behavior de-
be interpreted as the opening probability of the potassiunineated by the period-doubling curve BB Along this
channels an® accounts for the presence of a slow dynamicscurve, the first period-doubling of the continuous spiking be-
in the systemS is likely to be related to the intracellular havior takes place. In the heart of the region surrounded by
Ca™" concentration, although the precise biophysical interPD!2 we find an interesting squid-formed structure with
pretation of this variable remains unclebg, andl are the arms of chaotic behaviofindicated in black stretching
calcium and potassium currenti,= 3.6 andgx=10.0 the  down towards the Hopf bifurcation curve. Each of the arms
associated conductances, and-,=25 mV and V= of the squid-formed structure separates a region of periodic

ds
Tsa = Soc(v) - Sa

w(V)=
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-37 where the sensitivity functiod(¢) = grad,<¢>|\,:\,0 measures
the change of phase along the limit cycle caused by the
-38 A change ofV. To derive Eq.2), we choose a poin¥, on the
limit cycle and a pointV close toV, but not on the limit
-39 cycle and then measure the difference in phases betwgen
— 2 A andV. In the limit |V—V,|—0, this difference, divided by
E 40 |V—V,|, gives the sensitivity functio(¢).
- The interaction of twadentical oscillators with phase#-
>w —41 and ¢, can be quantified by the evolution of their phase

difference A= ¢, — ¢,. In the limit of weak interaction,
averaged over a period, the phase dynamics for one of the
oscillators can be expressed[24]

d(A¢) 1 (2n
P20y | Tdez@PGAD. @

Hopf

whereP(¢,A @) =P(Vo(d),Vo(¢+ A¢p)) describes the rate
of change of the state vectdtrof one oscillator due to inter-
Kg action at the other with a phase differente. The product
. . . L . . Z(P)P(d,A @) is the phase shift along the limit cycle for the
FIG. 2. Two-dimensional bifurcation diagram outlining the main considered perturbation. Note, that the limit cycles in the two

bifurcation structure in the\(s,ks) parameter plane for the single - . i
cell Sherman model. Note the squid-formed black region with cha-SyStemS are assumed to have similar shapes, i.e., to be topo

otic dynamics. ArrowsA, B, andC indicate different routes of pa- |Og||:CEi||y C(tmjlljlgated‘ led illat th trai t .
rameter variation discussed in the text. or mutually coupled oscillators, the entrainment mani-

fests itself as a mutual phase shift. This can be analyzed

bursting behavior witt spikes per burst from a region with PUrely in terms of theantisymmetricpart I';(A ¢) of the
regular n+1 spikes per burst behavior. Each arm has &effective coupling function(3) [21]. The zeroes of'5(A #)
period-doubling cascade leading to chaos on one side and@respond to the phase-locked synchronous stafes (
saddle-node bifurcation on the other. It is easy to see that thg cOnst) and their stabilities are determined by the slope of

number of spikes per burst becomes larg&kaspproaches I'.(A¢) atthe respec_tive states, i._e., a negative slope_ implies
zero. a stable state, and vice versa. This method of effective cou-

pling has been applied in a number of ca$#&s,16,19.
When the coupling becomes strong enough to modify the
geometry of the limit cycle, the phase reduction method can
Since the definition of phase multistability involves the no longer be used. Direct numerical methods should then be
phase difference between the interacting oscillators, thapplied.
phase variables are the main quantities used to characterize To calculate the effective coupling function, it is neces-
the collective dynamics. sary to defing(i) the equations for the model to be coupled
Let us first consider the weak-coupling case, i.e., we asand(ii) the coupling function. We assume that the coupling is
sume that the coupling causes only small perturbations of thef diffusive type and expressed by difference terms of the
limit cycles of the uncoupled oscillators. The coupled systenform C(X;—X,) where X;=(V;,n;,S;)" and X,
may then be approximated by a phase mgda] where the =(V,,n,,S,)" are the state vectors of the individual cell
phase¢ of a limit cycle oscillator is defined by (V,)/dt models.C is the coupling matrix for which we assume the
=1 with Voe RN being a point on the limit cycle. It is im- form C=diag(1,0,1), indicating that coupling takes place
plied that the full length of closed orbit corresponds .2 via the first and the third variables. The membrane potentials
Applying the concept ofsochronsdefined stroboscopically are coupled resistively via electric currents that flow between
(in terms of the period of the stationary oscillatioas a the cells, and the third variables are coupled via the diffusive
subset of initial conditions that asymptotically converge toexchange of calcium between the céR§]. The correspond-
the same point on the limit cycl@1], the phase description ing antisymmetric parts of the effective coupling function are
can be extended to some vicinity of this cycle. Moreover, fordenoted ad’, and "5, respectively. We do not consider
a sufficiently small vicinity of the stationary solution one can coupling via the gating variables, since such a coupling
assume that the above subset is a flat surface that is transvappears less realistic from a biological point of view. Note

0 0.002 0.004 0.006 0.008 0.010

Ill. METHOD

sal to the limit cycle at a given point. that a coupling strength parameter is absent in the expression
In the presence of a small perturbatiBi(V), the phase for C because the analysis assumes the coupling to be van-
dynamics obeys the following equati¢®l]: ishingly weak.
An example of the effective coupling method applied to
d—¢—1+Z( P(V) @) the Sherman moddl) is illustrated in Fig. 3. Control pa-
dt ¢ ' rameters are the same as in Fig. 1. This implies that each of
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FIG. 3. Upper panel: antisymmetric pdtfy, of the effective coupling function calculated for twbcoupled Sherman models. A set of
14 stable and 14 unstable synchronous regimes correspond to zero pointd'gf, thiction. Lower panel contains phase projections for
some of the indicated regiméthe coupling strength is 0.0001

the two cell models without coupling perform bursting dy- IV. MULTISTABILITY INDUCED BY DEPHASING

namics with ﬁve spikes per burdt, reveals a compllcated Let us return to the diagram in Fig. 2. There is no bursting
phase behavior for the coupled cell models with a set of, yhe right of the curve PP Here, continuous spiking is
coexisting synchronous regimes. Some of the detected r¢rq oniy stable mode. This regime is similar in many ways to
gimes, calculated for a finite coupling strength, are depictegne pehavior of 2D models, such as the van der Pol oscillator.
in the lower panel. There is no obvious relation between therh,s 5 relatively simple pattern for the mutual synchroniza-
number of spikes in a trai(five) and the detected zero points tjon of the cells is expected. For van der Pol oscillators, it
with negative slope of ', (fourteen. We conclude that it is has been shown that only the in-phase synchronous regime is
difficult to know a priori how many phase-locked regimes stable for weak diffusive couplingl3,14. However, inspec-
one can observe in systems of coupled bursters. To undetion of the considered parameter region for coupled Sherman
stand the origin of this complexity, the first stage of ourmodels shows that different patterns of synchronous states
investigation will be to describe the phase dynamics of thecan be found for weak diffusive coupling. For example, both
interacting cells in a state of continuous spiking, i.e., whenin-phase and antiphase regimes can be stable, and an addi-
bursting dynamics has not yet developed. tional pair of out-of-phase solutions can occur.
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As mentioned in the Introduction, there is an interesting log(|v]+1)
mechanism that can produce out-of-phase behavior ir 0-26 [ ]
weakly coupled oscillatory units. Dephasing has been showr
to be responsible for antiphase synchronization in couplec
Morris-Lecar neuron models and in coupled modified van
der Pol systemgl5,16. Although specific in details, models
exhibiting this effect have a common structure of their phase (oo
space. The presence of a saddle equilibrium located near bt
outside the limit cycle is crucial. In this case there is an
inverse gradient of phase velocity across to the trajectory or 0.20
the limit cycle. When perturbed by coupling, the phase tra-
jectories of the interacting units can be shifted towards or
away from the saddle point and, hence, the dynamics can b
slowed or become faster.

In contrast to the above 2D oscillators, the Sherman
model has a single equilibrium point inside the limit cycle. .80
How can dephasing arise in this case? We propose that th
mutual location of the equilibrium point and a limit cycle in
the original Sherman model is responsible for the observec
effects. In some region of phase space, the phase trajectory i
the single cell model approaches the unstable equilibrium
point quite closely. Thus, a weak perturbation can slow down
or accelerate the motion of the phase point considerably. Thi
causes the dephasing effect to arise.

To check the above hypothesis, we reduce the mode
equationg1) to a 2D model with only one faglV) and one
slow (S) variable(i.e., we assume the relaxation of the gating S
variablen to be very fas). This produces a model similar to
the FitzHugh-Nagumo model in the general form: 0.18

0.24

0.18

-20

log(|v|+1)
18

0.28

0.2
B 7

0.24 16

0.22

o

.20

dv

rgr = led V)= Ik(Vin) —14(V,§) = F(V.S), 016

0.14

S
Ts gy = S-(0)=S=0(V.9). 4 e vy %

} ] FIG. 4. Phase velocity contour plot for the reduced Sherman
_Here the te_rms are the same as in ED, butn,, is used model at(a) Vg=—44.0 mV, kg=0.001; (b) Vs=—38.19 mV,
instead ofn in the expression foky . ks=0.0175.

In Fig. 4 the mutual location of the limit cycléwhite

curve and the unstable equilibrium poifEP) is illustrated  der Pol oscillators, and the dephasing effect is not pro-
together with contour plots of the phase velodplid lines  nounced. As soon as the equilibrium point approaches the
with gray shading There is an area of slow motion, deter- limit cycle [Fig. 5a)], the antiphase regime becomes stable
mined by the location of the cubic shape nuliclif@/,S) but the in-phase solution maintains its stability in contrast to
=0. At the intersection off(V,S)=0 with the other the dephasing effect described by Heitnal. [15]. Two new
nulicline g(V,S)=0 there is a single poinfEP) of zero  out-of-phase unstable regimes appear. Simultaneous cou-
phase velocity. It is clearly seen how the position of EPpling via both theV and S variables produces a qualitatively
changes with varying control parameteoute A in Fig. 2), similar effect.
and the sensitivity to a weak perturbation of the limit cycle Thus, the coupled reduced modéds exhibit the dephas-
changes as well. In the right panel of Fig. 4, a deviation froming effect in a form different from the form described in
the unperturbed cycléwhite curve should not produce a Refs.[15,16. We expect that the dephasing effect will be
significant effect, while motion along the limit cycle in the preserved when we return to the full Sherman mode!

left panel becomes inhomogeneous. However, in coupled 3D systems it is difficult to make pre-
These qualitative observations are confirmed by calculacise statements about the mutual configuration of a limit
tion of the effective coupling functioriFig. 5. At Vg= cycle and an equilibrium point based on a Poincsgetion

—38.19 mV,ks=0.0175, the equilibrium point is located far only. Useful information can be obtained by calculating the
from the limit cycle. In this case, the in-phase synchronougistance between the two objects in phase space. In Fig. 6 the
regime is stable, but the antiphase solution is unstgfig  variation of the minimal distance between the limit cycle and
5(b)] for weak diffusive coupling via th& andSvariables. the equilibrium point is plotted. It is clearly seen that this
This behavior is similar to synchronization of coupled vandistance decreases with decreasing valueg-0fThe insets
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there areN values for the phase shift that produce in-phase
behavior for the fast oscillations, but a phase-shifted state for
all other spectral components. Generally, a stable synchro-
nous regime exists fax values of the phase shift. When the
diffusive coupling becomes stronger, symmetry breaking or
show examples of thé&', shape for selected values W§.  period-doubling bifurcations can occur and change the num-
For Vg=—38.39 mV the effective coupling function indi- per of stable regimes.
cates “good” behavior, similar to the behavior observed for  For systems demonstrating the period-doubling route to
coupled van der Pol oscillators. The in-phase state is the onlyhaos, it was found that the number of synchronous regimes
stable solution for coupling via thé (solid line) or S(dashed increases when the period of the cycle is incred@edl1].
line) variables. FolVg=—43.25 mV, I', indicates both in-  Let, for simple period-one oscillations with periot,, a
phase and antiphase regimes that are stable bot8 ¢ou-  phase difference between the subsystemegeFor oscilla-
pling and forV coupling. tions with doubled period whose spectrum contains the sub-

Summarizing the results of this section, the phase spadearmonic at frequencyw,/2=1/2T,, two different limit
structure of the Sherman model provides phase multistabilit¢ycles exist in the phase space of the interacting systems
even outside of the bursting region. The mechanism for thigorresponding to the phase differences/2 and (g
can be identified as a specific form of dephasing effect, re+27)/2, respectively. Note that a7 interval of the indi-
lated with a slowing down or acceleration of the trajectory invidual phase now corresponds to the entire period of the
each coupled unit. Note that the described effect takes plaggnit cycle 2T,. For two synchronized oscillators whose
for arbitrary weak coupling and is the result of the phasespectra include subharmonieg/2' (I=1,2, . ..) of thefun-
space properties of the Sherman model rather than of specifigamental frequency, the phase difference between the inter-
features of the coupling. In the bursting area we expect thecting units can attain' 2lifferent values distributed over the
considered mechanism to interact with the effect of multi-interval qQ...,o2m, ie., Sp=(po+2mi)2, i
crest wave forms, producing additional complexity in the=0,172 ...,2—1. This implies that for a period-two solu-
phase patterns. tion one can observe two stable phase-locked regimes while
a period-four solution gives rise to four stable synchronous
regimes, etc.

To consider the phase dynamics of coupled identical Sher-
man modelg1), we select routeB on the parameter plane

The complex wave form appearing due to period-(Fig. 2). In this area a normal period-doubling cascade can be
doubling bifurcations can be considered in terms of fast an@bserved in the synchronization states as the dynamics of the
slow (lowest over all subharmonig®scillations being in a individual model proceeds from continuous spiking towards

FIG. 5. Antisymmetric part for the effective coupling function,
calculated for the reduced Sherman mode{aatVs=—44.0 mV,
ks=0.001; (b) V5= —38.19 mV, kg=0.0175.

V. PHASE MULTISTABILITY DUE TO PERIOD-
DOUBLING CASCADE
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bursting [24]. Figure Ta) shows the transitions from the
period-1 solutiontop) to the period-2 solutioibottom and

Fig. 7(b) shows the further development to the period-4 so-
lution. The changes in the location of the zeroes forlthe

with variation of Vg are traced with solid lines. In the
period-1 regime, the system demonstrates two stéibled
circles and two unstabléopen circleg coexisting solutions
because of the dephasing effect. g~ —37.35 mV, the

first period-doubling bifurcation occurs, and the number of __
coexisting regimes increases. Together with in-phase and an=
tiphase regimes, two stable out-of-phase attractors appeag
Note that close to the bifurcation point the values of the (2
phase shift for the stable and unstable regimes are uniformly
distributed over the whole interval of2

A similar transition takes place at the second period-
doubling bifurcationFig. 7(b)]. Here, the location of stable
and unstable regimes is less regular with respect to the phas
differenceA ¢, but the total number of regimes is doubled at
the point of the period-doubling bifurcation.

Thus, the mechanism of phase multistability developed
for the period-doubling cascade is applicable to coupled
Sherman models as well. However, two specific features car
be observed in this case.

(i) Due to the dephasing effect, the original number of
regimes differs from the cases studied in previous works. In(a)
our case, the first period doubling increases the number o
regimes from two to four, instead of from one to two. The
second period-doubling bifurcation produces a transition
from four to eight regimes, instead of from two to four.

(i) Immediately after the period-doubling bifurcation, the
set of coexisting regimes can be redu¢edreaseglby other
mechanismgsuch as dephasingThis is clearly seen near
the bottom of Figs. (& and 1b).

VI. PHASE MULTISTABILITY IN THE BURSTING —
REGIME E

Bursting dynamics, representing another example of fast-.¢?
and-slow motion, differs from the above described oscilla-
tions in the period-doubled regimes since a silent state exists
This implies that local maxima are distributed nonuniformly
over the whole period and the set of possible synchronous
states is expected to have specific features. Let us develop
simplified qualitative analysis to understand how coexisting
regimes arise. The basic assumption for such an analysis is
tendency of coupled units to be synchronized with coinci-
dence of local maxima. The more local maxifsaikes that
coincide, the stronger is presumably the stability of the cor-
responding regime.

A. Simple qualitative approach {b)
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One can easily count the number of possible regimes with |G, 7. Schemes of zero point locations Tog, asVs is varied

overlapping spikes in two time seri€sig. 8). The results of
a more formal analysis can be summarized as follows.

across the first period-doubling bifurcation P¥(a) and across the
second period-doubling bifurcatigi). Black circles denote stable

solutions, open circles correspond to unstable regimes.

Equidistant spike train

We consider a signal that is characterized by spiking in-
terval Tgp=nAt and silence interval s=mAt (n, mare in-
teger$ with At=const The whole period is defined ds
=(n+m)At.

016215-7
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FIG. 8. Sketch of the expected variants of the synchronous re- FIG. 9. Number of phase-locked regimes vs the control param-
gimes for interacting bursting oscillations with three-spike trains.eter kg under the period adding scenai(see Fig. 2 Numbers
Note the difference between the cases when the interspike distancakng the upper edge of the figure denote the number of spikes per
are equala) and different(b). burst.

If my<n,—1, the silent region overlaps with the spike Limitations of the above approach
train. Hence, the number of possible combinations is equal to In the previous sections we showed that in-phase synchro-
Ns=n;+m;=N. This coincides with the result for the self- nization is not the only possible state for two coupled Sher-
modulation cas¢12] or for the period-doubling cascad®r  man models. Additional synchronous states, anti phase or out
which m=0 and the spike amplitudes are different within a of phase, are expected to be stable. It is not clear how the
bursy. above approach can be extended to the antiphase regime and
If m=n,—1, the number of possible synchronous re-out-of-phase states. At last, for some regimes the time inter-
gimes is equal tdlg=n; +n,— 1 and increases with increas- vals can be different between all spikes in a train. We con-
ing ny andns,. clude that one cannot be sure that an increasing number of
If n;+my#n,+m,, butAt still the same for both spike coexisting regimes will occur when increasing the spike
trains, then a minimal period,,=At(n;+m;)(n,+m,)  humber per train.
exists and the problem translates into the previous case.
However, the particular configuration of silent regions and

spike trains depends on the valuesngfm;,n,,m,. The set ] .
of synchronous regimes can be estimatednas-n,—1 Figure 9 illustrates how the number of detected stable

<Ng=<(n;+m;)(n,+m,). synchronous regimes changes when varying the control pa-
Hence, interacting “perfect” bursting oscillators are ex- "ameterks along the routeC as indicated in Fig. 2. Along

pected to provide even more synchronous states than seffis route, the number of spikes in a train increases stepwise
modulated oscillations of the same period when crossing the bifurcation curves. The bifurcation mecha-

nism in this direction was described by Mosekikteal. [20].
o ) ) One typically observes that thespike per burst solution
Nonequidistant spike train destabilizes in a subcritical period-doubling bifurcation and

This case is perhaps more realistic because the typicdhe (n+1)-spike solution arises in a saddle-node bifurcation.
bursting scenario involves a gradual reduction of the spikingdt is clearly seen from Fig. 9 that the maximal number of
frequency during a burst. In such a situation one can expeaoexisting stated\Ng tends to grow with increasing spike
the number of coexisting regimes for the interacting burstersiumber in the train. However, the fluctuation Nf is sig-
to change. nificant, and the whole plot looks quite random.

Let one of spikes in the train be located with a different To understand how the number of synchronous regimes
time interval from the other spikg&ig. 8b)]. This does not varies withkg, let us consider the behavior of the effective
affect the fully in-phase regime. However, the stability of thecoupling function as calculated for the seven-, eight-, and
phase-shifted regimes is likely to become weaker since thaine-spike traingFig. 10. We first note that the shape of the
coincidence of spikes is not so good as in Fi¢p)8At the  effective coupling function forV coupling is much more
same time, the additional cases of coincidence for the “sepasomplicated than fof coupling. This is associated with the
rated” peak appear. However, even through the tendency tdynamics of the individual Sherman model whé&feand S
synchronization may not be strong enough to provide addiare fast and slow variables, respectively. The spiking dynam-
tional stable synchronous states, at least they can produdes causes well-pronounced short-range oscillationd” of
so-called “ghosts” where phase differences develop slowly.around zero. Another interesting observation is that a smooth

B. Simulation results
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g-g b ] FIG. 11. Distance profile plotted against the position along the
o1 E ] limit cycle for bursting oscillations with seven, eight, and nine
= 00 spikes per train. Note that the minimal distances occur immediately

01 ] before the bursting states, and that these distances vary nonmono-
:g'g 3 ] tonically with the number of spikes per burst.
04 ] o
05k ] range variation of", and, hence, cause the abrupt changes of
-06 . the number of coexisting regimes. The strength of the
-0.7 i - dephasing effect can be indirectly measured by calculation of

the minimal distancé ,;, between the limit cycle and the
nearby equilibrium point. More detailed information can be
06 achieved via adistance profilealong the trajectory on a
closed orbit(Fig. 11). To produce this figure, the orbit was

0.5 |
04 | divided into 5000 pieces of equal time intervi@b000. The
03 calculated distanc® was then plotted against the specified
02 points on the orbit. Surprisingly, perhaps, the spiking region
, g‘; 3 is not the closest to the equilibrium point. This means that
~ o1 b adding spikes to a train with decreasikg may not be so
02| important as varying of the distance at the minimum point
03} (see enlargementNote that the distance at this poiifiteing
0.4 actually the minimal distancB,;,) changes nonmonotoni-

-05
-0.6

cally with decreasinds. Hence, dephasing can explain the
irregular changes of the set of coexisting regimes. To find
some correlation, we introduce the qualltl/N character-

ing how effectively the number of spikes in a train is trans-

FIG. 10. Effective coupling function for the multispike bursting formed to the set of synchronous regimes. We compare the
regimes. The solid line is fov coupling while the dashed line is for changes of this quality with the change of the minimal dis-
S coupling (a) seven spikes per train &s=0.00011;(b) eight tance under variation dfs. According to the simple quanti-
spikes per train aks=0.00009; (c) nine spikes per train akg  tative analysis at the beginning of this section, one can ex-
=0.00008. Note, how the slow variation &f, in (c) causes the pect thatNg/N~2.0—1/N for the case of “perfect” bursting.
number of stable synchronization regimes to be quite small, eveftn practice, theN;/N curve jumps within the rangg).666;
for V coupling. 4.25]. Moreover, one can observe a certain correlation be-

) ) ) tween curves foNg/N and forD,,;,. This means that the
deformation of a long-range componentlof with varying  gjistance variation between the limit cycle and equilibrium
ks (rather than changes in short-range oscillations'gf  point rather than the number of spikes per train governs the

Inspection of Fig. 1) shows that the region of short-range

oscil]ations of I, still exists but the long-range structure VIl. SUMMARY

dominates. As a result, the number of stable synchronous

states for the nine-spikes per train bursting dynamics is only We analyzed a number of mechanisms that can cause or

four. influence the occurence of phase multistability in two
The behavior described here supports the hypothesis thabupled bursters. Our main findings were the following.

the dephasing effect can play a significant role for the long- To estimate the number of stable synchronous states for a

016215-9
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0.004 strength of dephasing. We revealed an apparent correlation
0.003 between the minimal distance and number of coexisting so-
£ 0002 lutions. o _
A simple qualitative approach was introduced to count the
0.001 expected number of synchronous regimes. According to this
0000 — S o504 00506 50008 gpproac_:h the.number of .such _regimes should inC(ease with
: R k ' : increasing spikes per train. This approach works in the re-
S gion of the period-doubling route to chaotic bursting. At a
5 . period-doubling bifurcation, a corresponding doubling of the
4p---- i e S ity stable synchronous regimes tends to take place, even when
Zm 39 950 oo their original number was enchanced due to the dephasing
z e ::::ﬁr_:%?gﬁié effect.

Our analysis was based on the method of effective cou-
pling which is valid for vanishingly weak diffusive coupling.
s However, we checked our results by direct numerical simu-

FIG. 12. There is a certain correlation between plots for theldlions for coupling strengths of order of 10 Thus, the
minimal distance from the equilibrium point to the limit cydiep-  €ffects we discussed are structurally stable. _
per panel and for the number of coexisting stable regimes, normal-  Although  the biophysical mechanisms underlying the
ized to the spike number per traflower pane) bursting behavior may vary from cell type to cell type, we
expect many of our findings to remain valid. However, the
analysis leaves a number of open questions concerning the
structure of the synchronization regiof&rnol’d tongues
for nonidentical cells as well as in the influence of a stronger
{;oupling.

0 . .
0.0000 0.0002 0.0004 0.0006 0.0008

system of two weakly diffusively coupled bursting models it
is not enough to know the wave forms of the oscillations in
different regions of parameter space. Bursting oscillators of
ten have specific phase portraits, involving regions of fas
and slow motion, passing of trajectories close to singular
points, etc. As a result, the dephasing effect can play an
important role in the formation and evolution of coexisting  This work was partly supported by INTA8rant No.
regimes. 01-2061. O.S. acknowledges the Natural Science Founda-

The minimal distance from a limit cycle to an equilibrium tion of Denmark, and S.M. asknowledges RFBR Grant No.
point was suggested as a diagnostic tool to estimate th@l-02-16709.
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