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Complex phase dynamics in coupled bursters
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The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically
arises when the systems individually display complex wave forms associated, for instance, with the presence of
subharmonic components. Alternatively, phase multistability can be caused by variations of the phase velocity
along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase
multistability, the paper examines a variety of phase-locked patterns in the bursting behavior of a model of
coupled pancreatic cells. In particular, we show how the number of spikes per train and the proximity of a
neighboring equilibrium point can influence the formation of coexisting regimes.
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I. INTRODUCTION

Bursting is the primary mode of electrical activity for
variety of nerve and endocrine cells@1#. Braunet al. @2#, for
instance, have investigated bursting patterns in dischar
cold fibers of the cat, and Braunet al. @3# have studied the
effect of noise on signal transduction in shark sensory ce
Plant and Kim@4# have developed a mathematical model
account for experimentally observed burst patterns in pa
maker neurons, and Morris and Lecar@5# have modeled the
complex firing patterns in barnacle giant muscle fibers.

It is known that pancreaticb cells under normal circum
stances display a bursting behavior with alternations betw
an active~spiking! state and a silent state@6#. It is also es-
tablished @7# that the secretion of insulin depends on t
fraction of time that the cells spend in the active state, a
that this fraction increases with the concentration of gluc
in the extracellular environment. The bursting dynamics c
trols the influx of Ca21 ions into the cell, and calcium is
considered an essential trigger for the release of insulin
this way, the bursting dynamics serves to organize the
sponse of theb cells to varying glucose concentrations. A
glucose concentrations below 5 mM, the cells remain sile
For very high glucose concentrations (.22 mM), on the
other hand, the cells spike continuously, and the secretio
insulin saturates@8#. To provide the total output of a pancre
atic islet, a large number ofb cells must cooperate. Whe
interaction between the individualb cells is strong, sizable
clusters of cells operate as a single unit. With weaker in
action, however, the mutual entrainment of the firing acti
ties of the coupled cells becomes less trivial.

Many processes in nature may be characterized by a
nificant number of coexisting regimes at a given set of
rameters but with different initial conditions. A set of po
sible operating regimes serves as an example
multistability. We focus on the phenomenon ofphase multi-
stability, i.e., the simultaneous existence of stablesynchro-
nousregimes withdifferent phaserelationships between th
oscillations. Originally, this type of multistability was ob
served for diffusively coupled functional units that individ
ally follow the Feigenbaum period-doubling route to cha
@9–11#. The possible synchronous regimes increase in n
ber when more subharmonics of the basic frequency ca
1063-651X/2003/67~1!/016215~10!/$20.00 67 0162
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distinguished in the power spectrum. Phase multistabi
also takes place for weak chaos that demonstrates anN-band
structure.

The hierarchy of multistability in identical interacting sy
tems with weak dissipative coupling was studied numerica
and experimentally by Astakhovet al. @9#. Vadivasovaet al.
@10# showed that this type of multistability is structural
stable with respect to a weak mismatch between the b
frequencies. However, the bifurcation sequence chan
when the mismatch or the coupling strength is increas
Postnovet al. @11# described the nested structure of the pha
synchronized regions. Recently, considering a model
coupled units in the kidney, similar results were obtained
self-modulated oscillations with multicrest wave forms@12#.
For a system of two diffusively coupled oscillators operati
in the 1:n regime of self-modulation (n being an integer!,
one expectsn coexisting synchronous solutions that diff
from one another by phase shifts. The corresponding s
chronization region consists of a set ofn Arnol’d tongues
embedded one into the other or shifted with respect to
mean synchronization frequency.

Diffusive coupling between two limit cycle oscillator
typically leads to in-phase synchronization being the o
stable state in the weak-coupling limit@13,14#. It was re-
cently shown, however, that the same coupling for Morr
Lecar neuron models@15# and modified Van der Pol oscilla
tors @16# can give rise to antiphase synchronization when
limit cycle is close to a homoclinic bifurcation. In this cas
the dephasing originates from a deformation of the ph
flow, i.e., from a strong variation of the phase velocity alo
the limit cycle.

To our knowledge, the multistability of bursting oscilla
tors has not yet been examined in detail. de Vrieset al. @17#
found asymmetrically phase-locked solutions to be typi
for coupled heterogeneous beta cells while a set of coexis
out-of-phase regimes was observed for coupled Hindma
Rose models@18,19#. When changing the initial condition
the latter system switched from one burst-locked mode
another with fixed parameters. In the present paper, ins
of delineating different regimes and following the evolutio
of various coexisting solutions, we focus on differentmecha-
nismsof phase complexity in coupled bursters described
the Sherman model@20#. These mechanisms are related
©2003 The American Physical Society15-1
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FIG. 1. Example of bursting oscillations in the single Sherman model with five spikes per burst.~a! 3D phase plot;~b! temporal variation
for the membrane potential (VS5239.0 mV, kS50.000 57).
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the complex wave forms of the oscillations as well as to
variant of the above mentioned dephasing effect. As a qu
titative measure of phase dynamics we use the metho
effective coupling @21# that provides information on the
phase properties of the interacting solutions and on the n
ber of synchronous regimes.

II. MODEL

As a basis for the present analysis we use the simpli
model of a pancreaticb cell suggested by Shermanet al.
@22#:

t
dV

dt
52I Ca~V!2I K~V,n!2I S~V,S!, ~1!

t
dn

dt
5l@n`~V!2n#,

tS

dS

dt
5S`~V!2S,

where

I Ca~V!5gCam`~V!~V2VCa!,

I K~V!5gKn~V2VK!,

I S~V!5gSS~V2VK!,

v`~V!5
1

11exp@~Vv2V!/Qv#
with v5m,n, and S.

Here, V represents the membrane potential whilen may
be interpreted as the opening probability of the potass
channels andSaccounts for the presence of a slow dynam
in the system.S is likely to be related to the intracellula
Ca21 concentration, although the precise biophysical int
pretation of this variable remains unclear.I Ca and I K are the
calcium and potassium currents,gCa53.6 andgK510.0 the
associated conductances, andVCa525 mV and VK5
01621
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275 mV the respective Nernst~or reversal! potentials.t/tS
defines the ratio of the fast (V andn) and the slow~S! time
scales. The time constant for the membrane potential is
termined by the capacitance and the typical total cond
tance of the cell membrane. Witht50.02 s andtS535 s,
the ratiokS[t/tS is quite small, and the cell model is nu
merically stiff.

The calcium currentI Ca is assumed to adjust instanta
neously to variations inV. For fixed values of the membran
potential, the gating variablesn and S relax exponentially
towards their voltage dependent steady state valuesn`(V)
andS`(V). Together with the ratiokS of the fast to the slow
time constant,VS will be used as the main bifurcation pa
rameter. This parameter determines the membrane pote
at which the steady state value for the gating variableS at-
tains half its maximum value. The other parameters aregS
54.0, Vm5220 mV, Vn5216 mV, um512 mV, un
55.6 mV, uS510 mV, ands50.85. These values are a
adjusted so that the model can reproduce experimentally
served time series. In accordance with the formulation u
by Shermanet al. @22#, all the conductances have bee
scaled relative to some typical conductance. Hence, we
also consider Eqs.~1! as the model of a cluster of closel
coupledb cells that share the capacity and conductance
the total membrane area.

Figure 1 provides an example of the variations ofV,n,
andS as obtained by simulating the cell model under con
tions where it exhibits bursting behavior. A bifurcation ana
sis of the single Sherman model shows a variety of differ
spiking regimes@23#. An example of a two-dimensional bi
furcation diagram is presented in Fig. 2. Near the bottom
this figure we observe a Hopf bifurcation curve. Below th
curve, the model has one or more stable equilibrium poi
Above the curve we find a region of complex behavior d
lineated by the period-doubling curve PD1-2. Along this
curve, the first period-doubling of the continuous spiking b
havior takes place. In the heart of the region surrounded
PD1-2 we find an interesting squid-formed structure wi
arms of chaotic behavior~indicated in black! stretching
down towards the Hopf bifurcation curve. Each of the ar
of the squid-formed structure separates a region of perio
5-2
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COMPLEX PHASE DYNAMICS IN COUPLED BURSTERS PHYSICAL REVIEW E67, 016215 ~2003!
bursting behavior withn spikes per burst from a region wit
regular n11 spikes per burst behavior. Each arm has
period-doubling cascade leading to chaos on one side a
saddle-node bifurcation on the other. It is easy to see tha
number of spikes per burst becomes large askS approaches
zero.

III. METHOD

Since the definition of phase multistability involves th
phase difference between the interacting oscillators,
phase variables are the main quantities used to charact
the collective dynamics.

Let us first consider the weak-coupling case, i.e., we
sume that the coupling causes only small perturbations of
limit cycles of the uncoupled oscillators. The coupled syst
may then be approximated by a phase model@21# where the
phasef of a limit cycle oscillator is defined bydf(V0)/dt
51 with V0PRN being a point on the limit cycle. It is im-
plied that the full length of closed orbit corresponds to 2p.
Applying the concept ofisochronsdefined stroboscopically
~in terms of the period of the stationary oscillation! as a
subset of initial conditions that asymptotically converge
the same point on the limit cycle@21#, the phase description
can be extended to some vicinity of this cycle. Moreover,
a sufficiently small vicinity of the stationary solution one c
assume that the above subset is a flat surface that is tran
sal to the limit cycle at a given point.

In the presence of a small perturbationP(V), the phase
dynamics obeys the following equation@21#:

df

dt
511Z~f!P~V!, ~2!

FIG. 2. Two-dimensional bifurcation diagram outlining the ma
bifurcation structure in the (VS ,kS) parameter plane for the singl
cell Sherman model. Note the squid-formed black region with c
otic dynamics. ArrowsA, B, andC indicate different routes of pa
rameter variation discussed in the text.
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where the sensitivity functionZ(f)5gradVfuV5V0
measures

the change of phase along the limit cycle caused by
change ofV. To derive Eq.~2!, we choose a pointV0 on the
limit cycle and a pointV close toV0 but not on the limit
cycle and then measure the difference in phases betweeV0
and V. In the limit uV2V0u→0, this difference, divided by
uV2V0u, gives the sensitivity functionZ(f).

The interaction of twoidenticaloscillators with phasesf1
and f2 can be quantified by the evolution of their pha
differenceDf5f12f2. In the limit of weak interaction,
averaged over a period, the phase dynamics for one of
oscillators can be expressed as@21#

d~Df!

dt
5G~Df!5

1

2pE0

2p

dfZ~f!P~f,Df!, ~3!

whereP(f,Df)5P„V0(f),V0(f1Df)… describes the rate
of change of the state vectorV of one oscillator due to inter-
action at the other with a phase differenceDf. The product
Z(f)P(f,Df) is the phase shift along the limit cycle for th
considered perturbation. Note, that the limit cycles in the t
systems are assumed to have similar shapes, i.e., to be
logically conjugated.

For mutually coupled oscillators, the entrainment ma
fests itself as a mutual phase shift. This can be analy
purely in terms of theantisymmetricpart Ga(Df) of the
effective coupling function~3! @21#. The zeroes ofGa(Df)
correspond to the phase-locked synchronous statesDf
5const) and their stabilities are determined by the slope
Ga(Df) at the respective states, i.e., a negative slope imp
a stable state, and vice versa. This method of effective c
pling has been applied in a number of cases@15,16,19#.
When the coupling becomes strong enough to modify
geometry of the limit cycle, the phase reduction method c
no longer be used. Direct numerical methods should then
applied.

To calculate the effective coupling function, it is nece
sary to define~i! the equations for the model to be couple
and~ii ! the coupling function. We assume that the coupling
of diffusive type and expressed by difference terms of
form C(X12X2) where X15(V1 ,n1 ,S1)T and X2
5(V2 ,n2 ,S2)T are the state vectors of the individual ce
models.C is the coupling matrix for which we assume th
form C5diag(1,0,1), indicating that coupling takes pla
via the first and the third variables. The membrane potent
are coupled resistively via electric currents that flow betwe
the cells, and the third variables are coupled via the diffus
exchange of calcium between the cells@23#. The correspond-
ing antisymmetric parts of the effective coupling function a
denoted asGaV and GaS, respectively. We do not conside
coupling via the gating variablesn, since such a coupling
appears less realistic from a biological point of view. No
that a coupling strength parameter is absent in the expres
for C because the analysis assumes the coupling to be
ishingly weak.

An example of the effective coupling method applied
the Sherman model~1! is illustrated in Fig. 3. Control pa-
rameters are the same as in Fig. 1. This implies that eac

-
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FIG. 3. Upper panel: antisymmetric partGaV of the effective coupling function calculated for twoV-coupled Sherman models. A set o
14 stable and 14 unstable synchronous regimes correspond to zero points of theGaV function. Lower panel contains phase projections
some of the indicated regimes~the coupling strength is 0.0001!.
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the two cell models without coupling perform bursting d
namics with five spikes per burst.Ga reveals a complicated
phase behavior for the coupled cell models with a set
coexisting synchronous regimes. Some of the detected
gimes, calculated for a finite coupling strength, are depic
in the lower panel. There is no obvious relation between
number of spikes in a train~five! and the detected zero poin
with negative slope ofGa ~fourteen!. We conclude that it is
difficult to know a priori how many phase-locked regime
one can observe in systems of coupled bursters. To un
stand the origin of this complexity, the first stage of o
investigation will be to describe the phase dynamics of
interacting cells in a state of continuous spiking, i.e., wh
bursting dynamics has not yet developed.
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IV. MULTISTABILITY INDUCED BY DEPHASING

Let us return to the diagram in Fig. 2. There is no burst
to the right of the curve PD1-2. Here, continuous spiking is
the only stable mode. This regime is similar in many ways
the behavior of 2D models, such as the van der Pol oscilla
Thus, a relatively simple pattern for the mutual synchroni
tion of the cells is expected. For van der Pol oscillators
has been shown that only the in-phase synchronous regim
stable for weak diffusive coupling@13,14#. However, inspec-
tion of the considered parameter region for coupled Sherm
models shows that different patterns of synchronous st
can be found for weak diffusive coupling. For example, bo
in-phase and antiphase regimes can be stable, and an
tional pair of out-of-phase solutions can occur.
5-4
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COMPLEX PHASE DYNAMICS IN COUPLED BURSTERS PHYSICAL REVIEW E67, 016215 ~2003!
As mentioned in the Introduction, there is an interest
mechanism that can produce out-of-phase behavior
weakly coupled oscillatory units. Dephasing has been sho
to be responsible for antiphase synchronization in coup
Morris-Lecar neuron models and in coupled modified v
der Pol systems@15,16#. Although specific in details, model
exhibiting this effect have a common structure of their ph
space. The presence of a saddle equilibrium located nea
outside the limit cycle is crucial. In this case there is
inverse gradient of phase velocity across to the trajectory
the limit cycle. When perturbed by coupling, the phase t
jectories of the interacting units can be shifted towards
away from the saddle point and, hence, the dynamics ca
slowed or become faster.

In contrast to the above 2D oscillators, the Sherm
model has a single equilibrium point inside the limit cyc
How can dephasing arise in this case? We propose tha
mutual location of the equilibrium point and a limit cycle
the original Sherman model is responsible for the obser
effects. In some region of phase space, the phase trajecto
the single cell model approaches the unstable equilibr
point quite closely. Thus, a weak perturbation can slow do
or accelerate the motion of the phase point considerably. T
causes the dephasing effect to arise.

To check the above hypothesis, we reduce the mo
equations~1! to a 2D model with only one fast~V! and one
slow ~S! variable~i.e., we assume the relaxation of the gati
variablen to be very fast.! This produces a model similar t
the FitzHugh-Nagumo model in the general form:

t
dV

dt
52I Ca~V!2I K~V,n`!2I S~V,S!5 f ~V,S!,

tS

dS

dt
5S`~v !2S5g~V,S!. ~4!

Here the terms are the same as in Eq.~1!, but n` is used
instead ofn in the expression forI K .

In Fig. 4 the mutual location of the limit cycle~white
curve! and the unstable equilibrium point~EP! is illustrated
together with contour plots of the phase velocity~solid lines
with gray shading!. There is an area of slow motion, dete
mined by the location of the cubic shape nullclinef (V,S)
50. At the intersection of f (V,S)50 with the other
nullcline g(V,S)50 there is a single point~EP! of zero
phase velocity. It is clearly seen how the position of
changes with varying control parameter~route A in Fig. 2!,
and the sensitivity to a weak perturbation of the limit cyc
changes as well. In the right panel of Fig. 4, a deviation fr
the unperturbed cycle~white curve! should not produce a
significant effect, while motion along the limit cycle in th
left panel becomes inhomogeneous.

These qualitative observations are confirmed by calc
tion of the effective coupling function~Fig. 5!. At VS5
238.19 mV,kS50.0175, the equilibrium point is located fa
from the limit cycle. In this case, the in-phase synchrono
regime is stable, but the antiphase solution is unstable@Fig.
5~b!# for weak diffusive coupling via theV andS variables.
This behavior is similar to synchronization of coupled v
01621
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der Pol oscillators, and the dephasing effect is not p
nounced. As soon as the equilibrium point approaches
limit cycle @Fig. 5~a!#, the antiphase regime becomes sta
but the in-phase solution maintains its stability in contrast
the dephasing effect described by Hanet al. @15#. Two new
out-of-phase unstable regimes appear. Simultaneous
pling via both theV andS variables produces a qualitativel
similar effect.

Thus, the coupled reduced models~4! exhibit the dephas-
ing effect in a form different from the form described
Refs. @15,16#. We expect that the dephasing effect will b
preserved when we return to the full Sherman model~1!.
However, in coupled 3D systems it is difficult to make pr
cise statements about the mutual configuration of a li
cycle and an equilibrium point based on a Poincare´ section
only. Useful information can be obtained by calculating t
distance between the two objects in phase space. In Fig. 6
variation of the minimal distance between the limit cycle a
the equilibrium point is plotted. It is clearly seen that th
distance decreases with decreasing values ofVS . The insets

FIG. 4. Phase velocity contour plot for the reduced Sherm
model at ~a! VS5244.0 mV, kS50.001; ~b! VS5238.19 mV,
kS50.0175.
5-5
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POSTNOV, SOSNOVTSEVA, MALOVA, AND MOSEKILDE PHYSICAL REVIEW E67, 016215 ~2003!
show examples of theGa shape for selected values ofVS .
For VS5238.39 mV the effective coupling function indi
cates ‘‘good’’ behavior, similar to the behavior observed
coupled van der Pol oscillators. The in-phase state is the
stable solution for coupling via theV ~solid line! or S~dashed
line! variables. ForVS5243.25 mV, Ga indicates both in-
phase and antiphase regimes that are stable both forS cou-
pling and forV coupling.

Summarizing the results of this section, the phase sp
structure of the Sherman model provides phase multistab
even outside of the bursting region. The mechanism for
can be identified as a specific form of dephasing effect,
lated with a slowing down or acceleration of the trajectory
each coupled unit. Note that the described effect takes p
for arbitrary weak coupling and is the result of the pha
space properties of the Sherman model rather than of spe
features of the coupling. In the bursting area we expect
considered mechanism to interact with the effect of mu
crest wave forms, producing additional complexity in t
phase patterns.

V. PHASE MULTISTABILITY DUE TO PERIOD-
DOUBLING CASCADE

The complex wave form appearing due to perio
doubling bifurcations can be considered in terms of fast
slow ~lowest over all subharmonics! oscillations being in a

FIG. 5. Antisymmetric part for the effective coupling functio
calculated for the reduced Sherman model at~a! VS5244.0 mV,
kS50.001; ~b! VS5238.19 mV,kS50.0175.
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resonant ratio 1:N. When the oscillation wave form hasN
local maxima uniformly distributed over the whole periodT,
there areN values for the phase shift that produce in-pha
behavior for the fast oscillations, but a phase-shifted state
all other spectral components. Generally, a stable sync
nous regime exists forN values of the phase shift. When th
diffusive coupling becomes stronger, symmetry breaking
period-doubling bifurcations can occur and change the nu
ber of stable regimes.

For systems demonstrating the period-doubling route
chaos, it was found that the number of synchronous regim
increases when the period of the cycle is increased@9–11#.
Let, for simple period-one oscillations with periodT0, a
phase difference between the subsystems bef0. For oscilla-
tions with doubled period whose spectrum contains the s
harmonic at frequencyv0 /251/2T0, two different limit
cycles exist in the phase space of the interacting syst
corresponding to the phase differencesf0/2 and (f0
12p)/2, respectively. Note that a 2p interval of the indi-
vidual phase now corresponds to the entire period of
limit cycle 2T0. For two synchronized oscillators whos
spectra include subharmonicsv0/2l ( l 51,2, . . . ) of thefun-
damental frequency, the phase difference between the in
acting units can attain 2l different values distributed over th
interval 0, . . . ,2p, i.e., df5(f012p i )/2l , i
50,1,2, . . . ,2l21. This implies that for a period-two solu
tion one can observe two stable phase-locked regimes w
a period-four solution gives rise to four stable synchrono
regimes, etc.

To consider the phase dynamics of coupled identical Sh
man models~1!, we select routeB on the parameter plan
~Fig. 2!. In this area a normal period-doubling cascade can
observed in the synchronization states as the dynamics o
individual model proceeds from continuous spiking towar

FIG. 6. Minimal distance from the equilibrium point EP to th
limit cycle plotted against the value ofVS ~along theA route in Fig.
2!. Insets display the qualitatively different responses of the
Sherman model to weak coupling via theV variable~solid line! or
theSvariable~dashed line!. Note, the solid line in the upper inset i
reduced by 20 in the vertical scale to fit the same plot as the da
line.
5-6
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COMPLEX PHASE DYNAMICS IN COUPLED BURSTERS PHYSICAL REVIEW E67, 016215 ~2003!
bursting @24#. Figure 7~a! shows the transitions from th
period-1 solution~top! to the period-2 solution~bottom! and
Fig. 7~b! shows the further development to the period-4
lution. The changes in the location of the zeroes for theGaV
with variation of VS are traced with solid lines. In the
period-1 regime, the system demonstrates two stable~filled
circles! and two unstable~open circles! coexisting solutions
because of the dephasing effect. AtVS'237.35 mV, the
first period-doubling bifurcation occurs, and the number
coexisting regimes increases. Together with in-phase and
tiphase regimes, two stable out-of-phase attractors app
Note that close to the bifurcation point the values of t
phase shift for the stable and unstable regimes are unifor
distributed over the whole interval of 2p.

A similar transition takes place at the second perio
doubling bifurcation@Fig. 7~b!#. Here, the location of stable
and unstable regimes is less regular with respect to the p
differenceDf, but the total number of regimes is doubled
the point of the period-doubling bifurcation.

Thus, the mechanism of phase multistability develop
for the period-doubling cascade is applicable to coup
Sherman models as well. However, two specific features
be observed in this case.

~i! Due to the dephasing effect, the original number
regimes differs from the cases studied in previous works
our case, the first period doubling increases the numbe
regimes from two to four, instead of from one to two. T
second period-doubling bifurcation produces a transit
from four to eight regimes, instead of from two to four.

~ii ! Immediately after the period-doubling bifurcation, th
set of coexisting regimes can be reduced~increased! by other
mechanisms~such as dephasing!. This is clearly seen nea
the bottom of Figs. 7~a! and 7~b!.

VI. PHASE MULTISTABILITY IN THE BURSTING
REGIME

Bursting dynamics, representing another example of f
and-slow motion, differs from the above described osci
tions in the period-doubled regimes since a silent state ex
This implies that local maxima are distributed nonuniform
over the whole period and the set of possible synchron
states is expected to have specific features. Let us deve
simplified qualitative analysis to understand how coexist
regimes arise. The basic assumption for such an analysis
tendency of coupled units to be synchronized with coin
dence of local maxima. The more local maxima~spikes! that
coincide, the stronger is presumably the stability of the c
responding regime.

A. Simple qualitative approach

One can easily count the number of possible regimes w
overlapping spikes in two time series~Fig. 8!. The results of
a more formal analysis can be summarized as follows.

Equidistant spike train

We consider a signal that is characterized by spiking
terval Tsp5nDt and silence intervalTs5mDt (n, m are in-
tegers! with Dt5const The whole period is defined asT
5(n1m)Dt.
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For two interacting signalsx1(t) andx2(t), it is assumed

that n11m15n21m25N. To be specific, letn2,n1 and,
thus,m2.m1.

FIG. 7. Schemes of zero point locations forGaV asVS is varied
across the first period-doubling bifurcation PD1-2 ~a! and across the
second period-doubling bifurcation~b!. Black circles denote stable
solutions, open circles correspond to unstable regimes.
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If m1,n221, the silent region overlaps with the spik
train. Hence, the number of possible combinations is equa
Ns5n11m15N. This coincides with the result for the sel
modulation case@12# or for the period-doubling cascade~for
which m50 and the spike amplitudes are different within
burst!.

If m1>n221, the number of possible synchronous r
gimes is equal toNs5n11n221 and increases with increas
ing n1 andn2.

If n11m1Þn21m2, but Dt still the same for both spike
trains, then a minimal periodTnm5Dt(n11m1)(n21m2)
exists and the problem translates into the previous c
However, the particular configuration of silent regions a
spike trains depends on the values ofn1 ,m1 ,n2 ,m2. The set
of synchronous regimes can be estimated asn11n221
<Ns<(n11m1)(n21m2).

Hence, interacting ‘‘perfect’’ bursting oscillators are e
pected to provide even more synchronous states than
modulated oscillations of the same periodT.

Nonequidistant spike train

This case is perhaps more realistic because the typ
bursting scenario involves a gradual reduction of the spik
frequency during a burst. In such a situation one can exp
the number of coexisting regimes for the interacting burs
to change.

Let one of spikes in the train be located with a differe
time interval from the other spikes@Fig. 8~b!#. This does not
affect the fully in-phase regime. However, the stability of t
phase-shifted regimes is likely to become weaker since
coincidence of spikes is not so good as in Fig. 8~a!. At the
same time, the additional cases of coincidence for the ‘‘se
rated’’ peak appear. However, even through the tendenc
synchronization may not be strong enough to provide ad
tional stable synchronous states, at least they can pro
so-called ‘‘ghosts’’ where phase differences develop slow

FIG. 8. Sketch of the expected variants of the synchronous
gimes for interacting bursting oscillations with three-spike trai
Note the difference between the cases when the interspike dista
are equal~a! and different~b!.
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Limitations of the above approach

In the previous sections we showed that in-phase sync
nization is not the only possible state for two coupled Sh
man models. Additional synchronous states, anti phase or
of phase, are expected to be stable. It is not clear how
above approach can be extended to the antiphase regime
out-of-phase states. At last, for some regimes the time in
vals can be different between all spikes in a train. We c
clude that one cannot be sure that an increasing numbe
coexisting regimes will occur when increasing the sp
number per train.

B. Simulation results

Figure 9 illustrates how the number of detected sta
synchronous regimes changes when varying the control
rameterkS along the routeC as indicated in Fig. 2. Along
this route, the number of spikes in a train increases stepw
when crossing the bifurcation curves. The bifurcation mec
nism in this direction was described by Mosekildeet al. @20#.
One typically observes that then-spike per burst solution
destabilizes in a subcritical period-doubling bifurcation a
the (n11)-spike solution arises in a saddle-node bifurcatio
It is clearly seen from Fig. 9 that the maximal number
coexisting statesNs tends to grow with increasing spik
number in the train. However, the fluctuation ofNs is sig-
nificant, and the whole plot looks quite random.

To understand how the number of synchronous regim
varies withkS , let us consider the behavior of the effectiv
coupling function as calculated for the seven-, eight-, a
nine-spike trains~Fig. 10!. We first note that the shape of th
effective coupling function forV coupling is much more
complicated than forS coupling. This is associated with th
dynamics of the individual Sherman model whereV and S
are fast and slow variables, respectively. The spiking dyna
ics causes well-pronounced short-range oscillations ofGa
around zero. Another interesting observation is that a smo

e-
.
ces

FIG. 9. Number of phase-locked regimes vs the control para
eter kS under the period adding scenarioC ~see Fig. 2!. Numbers
along the upper edge of the figure denote the number of spikes
burst.
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COMPLEX PHASE DYNAMICS IN COUPLED BURSTERS PHYSICAL REVIEW E67, 016215 ~2003!
deformation of a long-range component ofGa with varying
kS ~rather than changes in short-range oscillations ofGa)
leads to changes of the number of intersections with z
Inspection of Fig. 10~c! shows that the region of short-rang
oscillations of Ga still exists but the long-range structur
dominates. As a result, the number of stable synchron
states for the nine-spikes per train bursting dynamics is o
four.

The behavior described here supports the hypothesis
the dephasing effect can play a significant role for the lo

FIG. 10. Effective coupling function for the multispike burstin
regimes. The solid line is forV coupling while the dashed line is fo
S coupling ~a! seven spikes per train atkS50.000 11; ~b! eight
spikes per train atkS50.000 09; ~c! nine spikes per train atkS

50.000 08. Note, how the slow variation ofGa in ~c! causes the
number of stable synchronization regimes to be quite small, e
for V coupling.
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range variation ofGa and, hence, cause the abrupt changes
the number of coexisting regimes. The strength of
dephasing effect can be indirectly measured by calculatio
the minimal distanceDmin between the limit cycle and the
nearby equilibrium point. More detailed information can
achieved via adistance profilealong the trajectory on a
closed orbit~Fig. 11!. To produce this figure, the orbit wa
divided into 5000 pieces of equal time intervalT/5000. The
calculated distanceD was then plotted against the specifie
points on the orbit. Surprisingly, perhaps, the spiking reg
is not the closest to the equilibrium point. This means t
adding spikes to a train with decreasingkS may not be so
important as varying of the distance at the minimum po
~see enlargement!. Note that the distance at this point~being
actually the minimal distanceDmin) changes nonmonotoni
cally with decreasingkS . Hence, dephasing can explain th
irregular changes of the set of coexisting regimes. To fi
some correlation, we introduce the qualityNs /N character-
ing how effectively the number of spikes in a train is tran
formed to the set of synchronous regimes. We compare
changes of this quality with the change of the minimal d
tance under variation ofkS . According to the simple quanti
tative analysis at the beginning of this section, one can
pect thatNs /N'2.021/N for the case of ‘‘perfect’’ bursting.
In practice, theNs /N curve jumps within the range@0.666;
4.25#. Moreover, one can observe a certain correlation
tween curves forNs /N and for Dmin . This means that the
distance variation between the limit cycle and equilibriu
point rather than the number of spikes per train governs
phase multistability for the bursting regimes~Fig. 12!.

VII. SUMMARY

We analyzed a number of mechanisms that can caus
influence the occurence of phase multistability in tw
coupled bursters. Our main findings were the following.

To estimate the number of stable synchronous states f

n

FIG. 11. Distance profile plotted against the position along
limit cycle for bursting oscillations with seven, eight, and nin
spikes per train. Note that the minimal distances occur immedia
before the bursting states, and that these distances vary nonm
tonically with the number of spikes per burst.
5-9
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POSTNOV, SOSNOVTSEVA, MALOVA, AND MOSEKILDE PHYSICAL REVIEW E67, 016215 ~2003!
system of two weakly diffusively coupled bursting models
is not enough to know the wave forms of the oscillations
different regions of parameter space. Bursting oscillators
ten have specific phase portraits, involving regions of f
and slow motion, passing of trajectories close to singu
points, etc. As a result, the dephasing effect can play
important role in the formation and evolution of coexistin
regimes.

The minimal distance from a limit cycle to an equilibriu
point was suggested as a diagnostic tool to estimate

FIG. 12. There is a certain correlation between plots for
minimal distance from the equilibrium point to the limit cycle~up-
per panel! and for the number of coexisting stable regimes, norm
ized to the spike number per train~lower panel!
.P

.

.V

a

E
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strength of dephasing. We revealed an apparent correla
between the minimal distance and number of coexisting
lutions.

A simple qualitative approach was introduced to count
expected number of synchronous regimes. According to
approach the number of such regimes should increase
increasing spikes per train. This approach works in the
gion of the period-doubling route to chaotic bursting. At
period-doubling bifurcation, a corresponding doubling of t
stable synchronous regimes tends to take place, even w
their original number was enchanced due to the depha
effect.

Our analysis was based on the method of effective c
pling which is valid for vanishingly weak diffusive coupling
However, we checked our results by direct numerical sim
lations for coupling strengths of order of 1024. Thus, the
effects we discussed are structurally stable.

Although the biophysical mechanisms underlying t
bursting behavior may vary from cell type to cell type, w
expect many of our findings to remain valid. However, t
analysis leaves a number of open questions concerning
structure of the synchronization regions~Arnol’d tongues!
for nonidentical cells as well as in the influence of a stron
coupling.
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